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Influence of intermittency on quantum spectra 
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Mechanics Depnment, Royal lnstitue of Technology, S-IW 44 Stockholm, Sweden 

Received 1 May 1992 

Abstrscl Bound chaotic systems typically exhibit intermittency. Some semiclassical 
pmpenies of intermittency are studied. The hyperbola billiard and the z2y2 model are 
used as strongly intermittent model systems. The almost integrable motion in the a m  of 
lhe potential may be treated in the adiabatic approximation. The corresponding adiabatic 
Hamiltonian may be semiclassically quantized, yielding surprisingly gmd agreement for 
the hyperbola billiard. I t  is then demonstrated, by means o l  the semiclassical trace 
formula, how this result may be related to families of periadic orbit exclusively exploring 
the potential arms. I t  i s  discussed how this result implies an integrable component in 
the spectrum. Possible implicalions for the resummation problem of the trace formula, 
as well as for the slalistical properlies of energy levels, are discussed. 

1. Introduction 

By intermittency in a dynamical system we mean motion that alternates between 
chaotic and regular behaviour. Subregions in phase space associated with (nearly) 
integrable motion may be found in almost all types of dynamical systems and maps. In 
a generic Hamiltonian system, phase space is divided into regions with quasiperiodic 
motion, and regions with chaotic behaviour. najectories in the border between these 
regions will show intermittent behaviour. Periodic orbits in the layer between KAM 
surfaces will then have Liapunov exponents tending to zero as their periods go to 
infinity [I], which is a typical signal of intermittency. 

Even strongly chaotic systems may exhibit intermittency. In, for example, the 
stadium billiard 12, 31 this is associated with the integrable subregion of the phase 
space corresponding to bouncing between the two straight lines connecting the 
semicircles. Note that this integrable subregion does not imply any quasiperiodic 
motion. All closed orbits have been scattered in the semicircles. The system has 
positive entropy and all periodic orbits will be unstable with one exception, the 
(degenerate) periodic orbit between the two straight sections has marginal stability. 
Sinai's billiard [4] is quite similar in this respect. 

A particle scattering in the enclosure between three (or more) touching circular 
disks will also show intermittent behaviour, since the motion is almost integrable close 
to where the disks touch. 

Generally, no bound system seems to provide hyperbolic (or axiom A) properties. 
Any Hamiltonian system may be represented by a map by means of a PoincarB 
surface of section. If the system is open, it is quite possible to realize a Smale 
horsehoe structure for the map with a well defined, complete symbolic dynamics as 
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6266 P Dahlqvist 

well as hyperbolicity, as in the scattering system consisting of three sufficiently spaced 
circular disks. 

But if, on the other hand, the system is bound, a phase-space region will now be 
mapped onto itself. Assuming reasonable continuity conditions it will clearly be very 
difficult, or even impossible, to preserve hyperbolicity over the entire phase-space 
region and completeness of the symbolic dynamics; the hyperbolicity of the baker’s 
map is possible because of a severe discontinuity. 

In a phase space with periodic boundary conditions it is quite possible to define 
a hyperbolic system. The cat map [5] is continuous on the torus and is indeed 
hyperbolic. It is even possible to define smooth Hamiltonians on the 2-torus with 
ergodic flow 161. These systems are entirely different, both classically and quantum 
mechanically, from the systems discussed in this paper and will be omitted from the 
discussion. We will also remain inside Euclidean space throughout this article. 

This unavoidable presence of intermittency in bound systems is important from 
several points of view. On the classical level, intermittency may imply power-law 
corrections for the exponential decay of resonances [3, 71. An intermittent system, 
with othenvise strong chaotic properties, is not structurally stable, as is the case with 
axiom-A systems. In a smooth bound system or, equivalently, in a smooth map, this 
means that small stable islands in phase space will normally exist [8], no matter how 
strongly chaotic the system is. In [9] it is shown how such small islands influence the 
decay of resonances, namely in the same way as intermittency does. 

There has recently been much work devoted to the study of the quantum 
mechanics of systems exhibiting chaos on the classical level, for a review see [lo]. 
Statistical studies of the set of quantum eigenvalues have been made, and for 
bound chaotic systems with time reversal symmetry, the level statistics have been 
conjectured [ l l ]  to agree with the Gaussian orthogonal ensemble (GoE). The level 
spacing distribution generally agrees well with the one given by GOE, but for other 
statistical measures, such as spectral rigidity, there is considerable disagreement 112, 
13). The understanding of these results from a semiclassical viewpoint is fragmentary. 
It is evident that the omnipresence of intermittency might be highly relevant in such 
a discussion. 

It is also interesting to note that a small island of stability in a phase space 
corresponds to a regular part of the quantum spectrum [14, 151. Due to the close 
connection between intermittency and these small stable islands it is natural to expect 
a regular component of the spectrum even in an arbitrary ergodic, but intermittent, 
system (e.g. billiard). Will this mean deviation of the level spacing distribution from 
the GOE or is it a neccesaly condition for GoE(-like) distributions? 

The purpose of the present paper is to study some semiclassical consequences 
of intermittency. Integrable systems may be semiclassically quantized by the WKB 
method (or rather the EBK method, in cases when the Hamiltonian is non-separable). 
A more general semiclassical theory is given by the Gutmiller trace formula [lo, 16) 
where the spectrum is written as a sum over periodic orbits. Successful use of this 
formula has been made in [17] for an open scattering system fulfilling axiom A, using a 
simple resummation method, Some progress has recently been made [ 18-22], applying 
the trace formula for bound ergodic systems, i.e. bound systems where all periodic 
orbits are unstable. However, the success in [17] relied heavily on the hyperbolicity, 
and the associated simple symbolic organization of periodic orbits. Bound chaotic 
systems are more complicated by, e.g., the presence of intermittency. The symbolic 
dynamics in an intermittent system is generally infinitely complicated. This is serious 
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because a simple symbolic dynamics is crucial for nice analytic properties of the trace 
formula [23]. This motivates a close study of intermittent properties in realistic bound 
potentials. 

The paper is organized as follows. In the next section we review some semiclassical 
properties of hyperbolic systems and their relevance to an open system. In section 3 
we present a one-parameter family of bound systems which we will use as a strongly 
intermittent model system and show how this system may be approximately quantized 
using the WKB method and the adiabatic approximation. In section 4 we derive the 
action integrals and stability eigenvalues for a family of periodic orbits associated with 
the intermittent motion. We show how Gutmiller's trace formula applied to these 
restricted families provides results which closely resemble the ~ K B  result, but with 
interesting differences. We round off with a discussion in section 5.  

2. Semiclassical mechanics of hyperbolic systems 

The semiclassical eigenvalues correspond to the poles of the Gutnuiller trace formula 
[lo, 161 or, equivalently, to the zeros of the Selberg-type zeta function [24], which for 
systems with two degrees of freedom reads as 

where 

S, is the action integral for a prime periodic orbit p, Ap the expanding eigenvalue 
of the linearized Poincark map, and p, a geometrical phase index [25]. We have 
assumed that all orbits are unstable. The quantum eigenstates belong to the 
irreducible representation (symmetry class) r and the periodic orbits are defined 
on the fundamental domain (or equivalently in the  desymmetrized system). xP,, is 
a symmetry factor [26-281 that depends on the irreducible representation T and the 
symmetry of the orbit p. 

E, 6 ( E  - E,) is related to the zeta 
L"IIL..LIUII 0 nLrurulrrg L" 

The spectral density function d ( E )  
I ....... :-.. .7 "-.,-*A:.." *,. 

1 d  
T d E  d( E) = d( E) -t - Im - In Z ( E )  (3) 

where the energy is assumed to contain a small negative imaginary part. 8( E) is the 

It  is a natural first step to apply equation (1) to axiom-A systems, i.e. systems with 
a symbolic dynamics, and the stability eigenvalues of all periodic orbits exponentially 
bounded away from 1. Let us further assume that the symbolic dynamics is binary 
and complete, i.e. each periodic binary code corresponds to one periodic orbit. This is 
realized, for example, by a symmetric three-disk scattering system, provided the disks 

me2n spear.! density. 



6268 P Dahlqvist 

are sufficiently separated [17, 291. The zeta function (1) is dominated by the m = 0 
factor, Z,, with expansion [17, 301 

zu = ~ - ~ l - ~ u - ~ ~ l u - ~ l ~ u l - ~ ~ l ~ - ~ l u ~ " l -  [ t110-~1~101 - ~ ~ l l ~ - ~ l ~ l ~ - ~ l , u ~ u + ~ l ~ l u ~ u l  

(4) - [till, - ~ l t l l d  - ItlW - ~1wtul - . ' ' . 
The expansion is organized in such a way that each square bracket contains some long 
orbit(s) (length n) minus its approximant(s) in terms of shorter ones. The sizes of 
these curvafure correcfions fall off exponentially with n. This effect is called shadowing. 
The expansion is dominated by thefundamental terms, for example, tu and tl. It 
was demonstrated in [17] that very accurate resulis for the quantum resonances can 
be obtained from (4) by keeping curvature corrections up to some n, and that the 
results converge rapidly with increasing n. 

?b get a qualitative idea of what the spectrum looks like, assume that the curvature 
corrections vanish identically (corresponding to infinitely separated disks) and that 
SI = S,  = L . k and A I  = Au = A, where the wavenumber k = and L is the 
disk centre separation (we are using units such that f i  = m = 1). The zeta function 
now approximately equals [31] 

with zeros given by 

where we have introduced the (average) Liapunov exponent X = logA/L and the 
topological entropy h = log2/ L. The result is a regular lattice of quantum zeros far 
down in the complex k-plane (remember that the system is open) where the leading 
quantum resonances correspond to m = 0. 

The completeness of the symbolic dynamics is crucial for this qualitative result. 
Suppose that the 6 orbit is pruned (and that for simplicity no other orbit is). (The 
overline symbol in 6 denotes periodicity, however this symbol will be frequently 
omitted in the following, since we only refer to periodic orbits.) Then there will 
be a whole sequence of periodic orbits without shadowing terms: [lo'] with i 2 0 
[30, 311 and these orbits may now be considered as fundamental. It is clear that 
equation (6) no longer captures the qualitative structure of the spectrum. We will 
eventually see how intermittency is often associated with such a pruning rule. The 
associated sequences (like 10') which will dominate the expansion of the zeta function 
will subsequently be called inremittent sequences and will have stability eigenvalues 
typically growing algebraically with i to  be compared with the exponential growth in 
the hyperbolic case. 

This will be the case if we close the disk system above. The orbit 0, i.e. the 
orbit bouncing back and forth between two disks, will thus be pruned. The orbit 10' 
will bounce i times in the horn-shaped region where the disks touch. The motion 
in this region is (asymptotically) integrable and the stability eigenvalues will increase 
algebraically with i. Note that not only the 0 cycie wiii be pruned in tne CiOSed disK 
system. In [32] it is argued that there is an infinity of pruning rules and that the 
pruning may be described in terms of a pruning front [33]. It may very well be the 
case that an infinite grammar of the symbolic dynamics is a generic property of bound 
Hamiltonian systems. 
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3. WKB quantization in the adiabatic approximation 

As a model system we will choose the one-parameter family of Hamiltonians 

ff= t ( * Z + p : + ( x  2 Y 2 1 I b ) .  (7) 

In the limit a -+ 0 we obtain the hyperbola billiard. Increasing a means a gradual 
softening of the billiard walls and when a = 1 we recover the frequently studied 
x2y2 potential. The symmetry group of this family is C4". The periodic orbits in 
these systems may be described by a symbolic dynamics using a three. letter [2,l,O] 
alphabet 121, 22, 28, 341. This coding scheme is thoroughly described in [22] together 
with explicit rules for determining the symmetry factors x , , ~  in terms of the symbol 
code. The important detail to bear in mind in the subsequent discussion is that a 
sequence of zeros, as in 2oowO 3 205 corresponds to a number of oscillations in the 
horn region, see figure 1. 

- -  

' c) ,110~. 
I 

U 
Flgum 1. Members of the intermittent sequences 20' and l I O ' ,  both in the fundamental 
and full domain. z 2 y 2  model 
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The equipotential curves have horn-shaped regions similar to those in the closed 
disk systems but now with infinite area; the quantum mechanical spectrum is still 
discrete. The systems show a typical intermittent behaviour with chaotic scattering 
in the central region and almost integrable motion out in the horns. The motion in 
these horn regions may thus be treated in the adiabatic approximation (351 in the 
following way: 

Suppose that z >> y, then the motion in the z direction will be much slower 
than in the y direction, and z may be regarded as a slowly varying parameter. In the 
adiabatic approximation the motion in the y direction is described by the Hamiltonian 

H ,  = 4 ( p i  + ( ~ ~ y ~ ) ' / " )  . 
By the adiabatic theorem the action integral in the y direction, as given by 

J ,  = / P , ~ Y  = ( 2 H y )  (1+a)/2 f(2Ja)lz (9) 

where 

is approximately a constant of motion. The full Hamiltonian may now be written as 
H 2: $ p :  + H (z), giving (approximately) the z motion for any J,.  If we now also 
transform the (z, p,) pair to action-angle variables we obtain the following expression 
for H 

We note that, although this expression was derived under the (asymmetric) assumption 
2 >> y, the final result is symmetric in z and y. Even though these adiabatic 

semiclassical quantization of (11). This was indeed done for the special case a = 1 
in [35]. In the other limit a + 0 (hyperbola billiard) one obtains 

expressiGPs are. not v m  in !he centra! region it is very tempting to perform a 

Eid = t T ( n ,  + l ) ( n ,  + 1). (12) 

Note that, in this expression, the factor ( n  + 1) appears and not the more familar 
factor ( n  + 4) since reflections off a hard wall acquires a phase shift T ,  rather 
than r / 2 .  Quantum mechanical calculations have been performed for the A, 
representation (denoted by minus signs in the fifth column in table 1) and the B, 
representation (denoted by plus signs) in [36]. These two representations correspond 
to odd values of (n=,  n y )  since the wavefunctions are odd with respect to the 
y = 0 and E = 0 lines. With the two adiabatic states ( k , l )  and ( 1 , k )  one 
can construct one A, and one B, state (except the ic = i case which aiways 
corresponds to a E ,  state), We see from table 1 that the spectrum is surprisingly 
well described by this simple adiabatic expression. However, due to the central part 
of the potential where the adiabatic approximation is not applicable, the degeneracy 
between the two representations is split. Within each representation we clearly see 
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the effect of level repulsion. (The last column in table 1 show averages over the 
quantum mechanical eigenenergies which should be compared with the (degenerated) 
semiclassical adiabatic ones in the second column.) Although close to an integrable 
Hamiltonian, the system is still non-integrable, so this is just what we should expect. 
Another aspect of this non-integrability is that (almost) all periodic orbits are isolated 
and unstable. In the strict limit a -+ 0 all periodic orbits are indeed unstable, but 
when a > 0 small regions in phase space are generally occupied by regular motion 
[8, 221. 

Table 1. Adiabatic and exact quantum eigenvalues in the hyperbola billiard. 

nz % Ead EQM E,. 
1 I 6.28 5.87 + 5.87 
i 3 i2.57 it73 - ii.iiJ 
3 1  13.66 + 
1 5 18.85 18.14 + 18.14 
5 1  18.14 - 
I 7 25.13 22.89 + 25.36 
3 3  24.71 - 
7 1  28.46 
1 9 31.42 29.75 
9 1  31.45 
1 11 37.70 33.97 
3 5  36.81 
5 3  38.52 
I1 1 42.10 
1 13 43.98 43.12 
13 I 43.67 
1 15 50.27 48.27 
3 7  48.63 
7 3  51.91 
15 1 52.56 

+ 
- 30.60 
+ 
- 37.85 
+ 
- 
+ 
- 43.39 
+ 
+ 50.34 

+ 
- 

- 
1 17 56.55 55.10 - 56.60 
5 5  55.55 + 
17 1 59.14 + 

The problem of calculating the mean spectral staircase function is similar to the 
problem of counting the number of integer lattice points below a hyperbola. A 
solution was given by Dirichlet [37]. The mean number of states below E belonging 
to representation A, and B, is then found to be (cf appendix) 

This expression should be compared with the result of [38] 

The adiabatic expression is obtained from an extrapolation into the region where 
the adiabatic approximation is not valid whereas the latter formula is the result of a 
careful analysis of the central region as well as the arms. The results only differ by 
10% in the second term. 
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4. Periodic orbit quantization in the adiabatic approximation 

The aim of this section is to see to what extent we can reproduce the WKB result of 
the last section hy means of periodic orbit theory. There are two families of periodic 
orbits exploring only the arms of the potentials (7) and which may be relevant for 
this purpose. These are the infinite sequences 20' and l l O ' ,  cf figure 1. These 
orbits may be considered as fundamental since they cannot be pieced together from 
shorter orbits because of the pruning of the zero cycle. We can now write down an 
approximation of the zeta function by means of a sum over the fundamental orbits, 
cf equation (4), only taking into account orbits exclusively exploring the arms 

where 1, is given by equation (2). It is a poor approximation of the full zeta fucntion, 
since it neglects the influence of the central chaotic region, but it is likely to be related 
to the WKB result of the previous section. In (15) we have omitted the factors in 
equations (1) with m > 0. 

Our objective now is to calculate the S,  and A, for intermittent sequences such 
"" -mi *xia ... : t i  n~n,. ,G..- .I.- ...-*A,. -.._" a..ar I,. +I.- r..n-:n~ 
63 LU . ".G w111 d,JU (,", L U G  ,L,UL"GL,L, 1.z3LllL.I U",JClYCJ ,U L I l r  "yc"", L a D C  n i 0, 

H = ~ T J ~ J , , .  (16) 

where we have the adiabatic Hamiltonian (cf (11)) 

From the fundamental relation w = a H / a J  we get 

An orbit in the family 20' makes ( i  + 1)/2 full oscillations in the y direction for each 
112 oscillation in the x direction (this corresponds to one traversal of the periodic 
orbit in the fundamental domain, but only half of the corresponding periodic orbit in 
the full domain, cf figures 1 and 2): 

Equating (16) and (17) gives J ,  and J y  so that we may express the total action 
integrai Sp as 

where IC( E) = 
The stability is slightly more complicated to calculate. To this end we introduce 

the Poincare surface oi section y = 0, rhus defining the area-preseivhg map 
( x ' ,  p k )  Y ( x " , p $ )  The aim is to calculate the stability (or monodromy) matrix 
M 

is the momentum (or wavenumher). 
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The adiabatic approximation breaks down in the central region. The results in the 
previous paragraph for the action integral could, however, be continued into this 
region without trouble. This is not possible when calculating the stability. In order to 
calculate the stability for the orbits 20' we split the orbit into three parts according 
to figure 2 and write A4 = ~ , M a d M l  where only Mad is to be calculated in the 
adiabatic approximation. 

The idea now is to  introduce variations 62' and 6 p ;  and write down adiabatic 
equations to determine 62" and 6 p ;  uniquely. We are also going to restrict ourselves 
to orbits starting and ending at E' = E" = E" with momentum p; = - p i  = 
 COS(+^). Without loss of generality we can set k ( E )  = @ = 1. ?b this end we 
rewrite equation (9) as ( Q = 0) 

(21) H = 1 2 2 2  
Y 8" JYE ' 

E = 1  2Pr 2 + f fy(E) .  

Conservation of energy gives 

(22) 

We can now write down the total phase traversed in the y direction 

which is an integer multiple of R. Due to the definition of the Poinark section, F 
will remain constant when varying E' and p:, so that the requested set of equations 
equations becomes 
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If, for example, we vary 2' but keep 6p: = 0, it is straightforward to calculate 6r" 
and 6p;. We arrive at 

where 

s = sin(+,) c = cos(d~,,) f = sin(24,) + 24,. (26) 

MI is obtained from simple geometric considerations. We cite the results obtained 
in the limit 4, << 1, corresponding to i >> 0 in 20' 

fil is obtained from time-reversal symmetry 

%king the limit 6, 
gives 

1 in (25), multiplying M = MlMadMI, and taking the trace 

39R Tr(M) = - 
4; ' 

All that remains is to relate the angle 4, to the number i in 20'. Simple geometry 
relates z" = z' _= zo with @,, 

A 

Since p k  = cos( 4") (remember k( E) = 1) and through (24) we have 

2 ~ J , , ~ u  I =sin(&) z &. (31) 

These two expressions thus relate 4,, to the adiabatic invariant J y .  Through (16) and 
(18) we have a relation between J ,  and i. We thus arrive at 

T r ( M ) = y ( i + l ) .  (32) 

The result is an asymptotic linear increase in the stability eigenvalues with i. 
Comparison between the result of (19) and (32) with numerical results are displayed 
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Figure 3. Action inlegrals (a) and the lrace of lhe stability matrix (b) ealculaled in 1he 
adiabatic approximation (broken cuwe) and numerically (squares). for the sequence 20' 
in the hyperbola billiard, k ( E )  = 1. 

in figure 3. The actions S ( k )  agree extremely well. The slope of the traces approach .. 
the calculated value of 117/4 but there is a small shift. 

The associated Liapunov exponents tend to zero 

which, as we have said, is typical for an intermittent system. 
A similar treatment may be given to the intermittent sequence 110'. The result 

is still a linear increase in Tr (M)  but with a much larger prefactor. The last sum in 
(15) may thus be omitted. To write down the adiabatic zeta function we only need 
the symmetry factors xT,p and the phase indices p p .  From the expressions in (22) we 
obtain 

x,,, = i-ij: i i r = A , , E ,  

p p = 2 ( i + 1 ) .  

We can now write down the adiabatic zeta function Z,, as 

where 

c=&%O.185 a = O  

(34) 
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A similar calculation for the z2y2 model, that is a = 1, also yields a linear increase 
in Tr( M)  for both the intermittent sequences. The calculation in the central region is 
more difficult to make accurately but numerically one finds that the slopes of Tr(  M) 
against i are 24.6 and 23.5 for the 20' and 110' sequences, respectively. The adiabatic 
zeta function for the a = 1 case is thus given by (35) but with c x 0.41, and with a 
simple rescaling of energy. 

It would now be interesting to study the staircase function 

(37) 
L 

7 l  
Nad( E )  - m( E )  - Imlog Zad( E) 

and to compare it with the corresponding WKB result: " ( E )  - N ( E ) ,  where 
NWm(E) is obtained from (12) and m ( E )  is given by (14). 

The series in (37) converges absolutely if Im( E) > 0 and diverges if Im( E) < 0. 
However when Im( E) = 0, expression (37) seems to converge and the result obtained 
from the first 100 terms is displayed in figures 4(a) and (c). 

T = A, + B2 

-2 - 

-3 - 

- 0 2 ~  

20 22 24 26 

Figure 4. Spectral staircase function calculated in the adiabatic approximation using 
periodic orbit theory ( (0)  and (c)) and the WKB method ( (b)  and (d) ) .  

The corresponding WKB result may be seen in figures 4(b) and (d). We note a 
striking similarity. The intermittent sequences yield peaks close to the WKB positions 
and there is a clear correlation between the degenelacy of the WKB eigenvalues and 
the height of the peaks in figures 4(a)  and 4(c). Clearly the periodic orbit result is 
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smeared out compared with the WKB one. However, the most important difference 
between the two figures is the amplitude of the oscillations. Clearly, the periodic orbits 
that went into this calculation only constitute a small subset. Therefore they will not, 
by themselves, produce zeros on or close to the real IC axis of the corresponding zeta 
function. The result from this adiabatic calculation should be interpreted instead as 
an integrable component of the spectrum. However, not in the sense of [14] where 
certain levels (in the semiclassical limit) are associated with regular motion and some 
with irregular motion. For finite energies it will be recognizable as a tendency of the 
spectrum towards the integrable result of equation (12). 

In the a = 1 case the only difference lies in the factor c which is larger; the result 
is quite similar to  those in figures 4(a) and (c) but with roughly twice the amplitude. 

5. Discussion 

It is instructive at this point to review an expansion of the full zeta function (1) that 
was made in [22] for the hyperbola billiard. The zeta function is then written as a 
sum over all possible linear combinations n = [m,], 

Z ( E )  = C Cnei[S.-pn"/2l 

n 

where we have defined the quantities 

s n  = Cm,s, 
P 

CL, = C m p p , .  

(39) 

~ 

P 

The C, are amplitudes related to the stability eigenvalues. In [22] this series was 
ordered according to decreasing amplitudes. The first 100 terms for hyperbola billiard 
in the A, representation are given in table 2. We use the obvious notation 

The (infinite number of) factors with m = 0 are omitted from the table since 

We note that there are no terms with m > 1 among the first 100 pseudo orbits 
so this justifies the omission of all higher factors in (1). 

We also made the shadowing assumption, but terms like t,,,,,o- tZUUtZUW are not 
very abundant in the expansion and the cancellation works prety well. 

The series is dominated by two types of intermittent sequences and cross terms 
among them. First there are the infinite ones, already discussed: 110' and 20i, this 
subset of the expansion is well approximated by (35). Then there are finite sequences 
exploring both the central region and the arms. Example of this latter kind are 
lo', 21210' and 220' terminating at i = 5, 16 and 51, respectively. These are not 
fundamental in the sense of [30], since they may, in some sense, be approximated 
by shorter orbits exploring only the central and horn regions, respectively. However, 

tm=U = 1. P 
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no straightforward shadowing scheme has been worked out for the hyperbola billiard 
and a simple inspection of table 2 does not indicate any effective shadowing among 
long orbits and combinations of shorter ones. The finite intermittent sequences are 
of fundamental importance in the expansion of the zeta function, representing the 
coupling between the central chaotic region and the intermittent horns. The traces 
of the stability matrix TI( M) for the finite sequences increases slower than linearly 
with the number of zeros, as seen in figure S(o). 

In [19,22,39] it was demonstrated that the cycle expansions, such as equation (38) 
yields zeros close to the real k axis, where there is a one-to-one correspondence 
between the real part of the zeros and the quantum mechanical eigenenergies, at 
least for low energies. 

For the case treated earlier the infinite intermittent sequences, associated with 
an integrable spectrum, and the finite sequences, representing the coupling with the 
central stochastic region of the potential, should cooperate in order to produce these 
zeros. These zeros exhibit level repulsion compared with the underlying integrable 
result, see table 1. 

In the z 2 y 2  model the sequences 10' and 220' already terminate at i = 0 and 
7, respectively. We also noted that the amplitude of the phase variations of Z,, 
was twice as large as those in the hyperbola billiard. The adiabatic+WKB result 
of [35] (corresponding to equation (12)) also agreed better with the exact quantum 
mechanical result. 
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Figure 5. (a) The trace of the stability matrix for the infinite sequence 20' (0) and the 

the stability matrix for lhe infinite sequence 20' (0) and lhe finite sequence 220' (0) 
for the zzyz model. 

B"tC sCqK.!!ces 2!?!c!' (+) lad  22a (0) fcr !he !?y@O!l bi!!iEn'. ( b )  c . c  !TlCC of 

In the smooth systems 4 > 0, TI( M) will, in the general case, not even increase 
monotonically with the number of 0 in the code. This is illustrated by the sequence 
220' in the zzyz model in figure 5(b). The reason is that when a periodic orbit 
is pruned through a bifurcation, its stability eigenvalue has to be unity. When the 
parameter a is increased from 0 to 1 the associated curve in figure 5(a) will bend 
down and members of the sequence 220k will be pruned one by one [22]. In a small 
range in the parameter a there will be a stable island surrounding the orbit which 
is about to be pruned. The presence of stable orbit induces divergences in the trace 
formuia. 

Even if we were so lucky that no stable islands exist for the parameter value we 
have happened to choose, it is evident that these effects will cause serious problems 
in any attempt to apply the trace formula. A regularization scheme based on an 
analogy of the RiemannSiegel formula [18] will clearly not capture such an intricate 
structure in the sequences of cycle invariants, which we must expect to find in any 
simple smooth bound system one uses to model chaos. We are thus far from any 
simple rules for quantizing chaos. 

The potentials treated in this paper are special in the sense that the phase 
space associated with the intermittent motion is infinite. The extent to which the 
wavefunctions penetrate the horn regions is given by the de Broglie wavelength. But 
as the energy tends to  infinity the ratio between the area Of the accessible horn 
region and the central region increases. The question is whether the energy spectrum 
is described more accurately by (12), as the energy increases. In particular adiabatic 
states with n5 > ny and ny > n5 should give an accurate description, see [40, 411. 
The published eigenvalues in the hyperbola billiard are too few to give any hints of 
the tendency. 

In [36] it is argued that the level spacing distribution in the hyperbola billiard 
is given by (or similar to) FOE, but the number of obtained eigenstates is too low 
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Figure 6. The region under the hyperbola is divided into three subregions. 

to provide a significant result. The question is whether the integrable tendency 
represented by the intermittent subregions of phase space is a necessary component 
to obtain a GoE-like level spacing distribution or whether it will mean deviations 
from GOE. Studies of the stadium billiard suggests the latter possibility [42]. The 
marginally stable orbit between the straight sections corresponds to an underlying 
integrable component of the spectrum in very much the same way as the result 
earlier and it is argued that this will induce an increased probability of occasional 
degeneracies compared with GOE. 

Usually the spectral rigidity deviates significantly from the predictions of [43], 
where the spectral rigidity is predicted to agree with GOE up to a certain breakpoint 
related to the shortest periodic orbit in the system. Such deviations are reported in 
[12, 13, 441 for the anisotropic Kepler problem, Sinai's billiard and the hyperbola 
billiard respectively. If a system is intermittent, as, for example, Sinai's billiard, 
the time scale relevant for this breakpoint should naturally be associated with the 
intermittency rather than the shortest periodic orbit in the system. The anisotropic 
Kepler problem in [12] is characterized by a phase space densely filled by cantori 
[45] and an extreme type of intermittency; there are families of periodic orbits, 
associated with the collision manifolds, with accumulating eigenvalues [39], which 
should be compared with the algebraically increasing eigenvalues in this article. In 
(461 it is demonstrated how transport barriers, such as island chains and cantori, 
induce deviations from the GOE for finite energies (thus not in the strict semiclassical 
limit). It should be noted that cantori may exist even in chaotic billiards [47]. 
These examples show how timescales, for example, due to barriers, short periodic 
orbits and intermittency, naturally give bounds to a possible universal regime. It has 
been stressed in the present paper that such features may not be avoided in chaotic 
systems. Low-dimensional chaotic systems show a rich and varying behaviour, leaving 
traces in the spectral measures. It is a challenge for the future to understand the 
subtle interplay between features such as cantori, intermittency, stable islands on the 
quantum level as well as localization effects of the wavefunctions. 
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Appendix 

In this appendix we slightly generalize a result due to Dirichlet [37] which we need 
in order to calculate the mean level staircase jV( E) for systems where the energy 
levels are given by 

p,y&y (.i - a ) ( j  - a)  (42) 

where i and j are positive integers and 0 6 a < 1. We therefore ask ourselves: 
how many integer pairs ( i , j )  are there such that ( i  - a ) ( j  - a) < K. We call this 
number N and, with the notations in figure 6, we can write 

where [ ] denotes integralfraction of. It is now straightforward to show 

1 l 6 - a l  
N ( E ) = 2 1 i  - - K + O ( J T T ) .  

2 - 0  
i = l  

(45) 

We now need to calculate a sum such as E,”=, l / ( i  - a). ’Ib that end we expand the 
terms in the sum to a geometric series. Exchanging the order of summation we get 

where y is Euler’s constant and C the Riemann zeta function. Introducing the 
constants 

we can write down our final mean level staircase as 

N ( K )  = I< In ( I i )+ (2ya  - 1)1i+o(J7;;). (48) 

Erample. Let us demonstrate how to use this result to estimate the mean spectral 
staircase for a system with eigenenergies given by 

E = f n ( n z  + I)(*, + 1) (49) 

in the representations A, + E,.  The quantum number are thus odd: n, = 22 - 1 
and ny = 2 j  - 1, where i and j are positive integers The function A-( E) in (42) is 
IC( E) = E / 2 n  and 01 L 0. The result is given in equation (37). 

Non-zero a appears in other representations and/or other phase indices. 
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