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Abstract. Bound chaotic systems typically exhibit intermittency. Some semiclassical
properties of intermittency are studied. 'The hyperbola billiard and the x2y? model are
used as strongly intermittent model systems. The almost integrable motion in the arms of
the potential may be treated in the adiabatic approximation. The corresponding adiabatic
Hamiltonian may be semiclassically quantized, yielding surprisingly good agreement for
the hyperbola billiard. It is then demonstrated, by means of the semiclassical trace
formula, how this result may be related to families of periodic orbil exclusively exploring
the potential arms. It is discussed how this result implies an integrable component in
the spectrum. Possible implications for the resummation problem of the trace formula,
as well as for the statistical properties of energy levels, are discussed.

1. Introduction

By intermittency in a dynamical system we mean motion that alternates between
chaotic and regular behaviour. Subregions in phase space associated with (nearly)
integrable motion may be found in almost all types of dynamical systems and maps. In
a generic Hamiltonian system, phase space is divided into regions with quasiperiodic
motion, and regions with chaotic behaviour. Trajectories in the border between these
regions will show intermittent behaviour. Periodic orbits in the layer between KaM
surfaces will then have Liapunov exponents tending to zero as their periods go to
infinity [1], which is a typical signal of intermittency.

Even strongly chaotic systems may exhibit intermittency. In, for example, the
stadium billiard [2, 3] this is associated with the integrable subregion of the phase
space corresponding to bouncing between the two straight lines connecting the
semicircles. Note that this integrable subregion does not imply any quasiperiodic
motion. All closed orbits have been scattered in the semicircles. The system has
positive entropy and all periodic orbits will be unstable with one exception, the
{degenerate) periodic orbit between the two straight sections has marginal stability.
Sinai’s billiard [4] is quite similar in this respect.

A particle scattering in the enclosure between three (or more) touching circular
disks will also show intermittent behaviour, since the motion is almost integrable close
to where the disks touch.

Generally, no bound system seems to provide hyperbolic (or axiom A} propertics.
Any Hamiltonian system may be represented by a map by means of a Poincaré
surface of section. If the system is open, it is quite possible to realize a Smale
horsehoe structure for the map with a well defined, complete symbolic dynamics as
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well as hyperbolicity, as in the scattering system consisting of three sufficiently spaced
circular disks.

But if, on the other hand, the system is bound, a phase-space region will now be
mapped onto itself. Assuming reasonable continuity conditions it will clearly be very
difficult, or even impossible, to preserve hyperbalicity over the entire phase-space
region and completeness of the symbolic dynamics; the hyperbolicity of the baker’s
map is possible because of a severe discontinuity.

In a phase space with periodic boundary conditions it is quite possible to define
a hyperbolic system. The cat map [5] is continuous on the torus and is indeed
hyperbolic. Tt is even possible to define smooth Hamiltonians on the 2-torus with
ergodic flow [6]. These systems are entirely different, both classically and quantum
mechanically, from the systems discussed in this paper and will be omitted from the
discussion. We will also remain inside Euclidean space throughout this article.

This unavoidable presence of intermittency in bound systems is important from
several points of view. On the classical level, intermittency may imply power-law
corrections for the exponential decay of resonances {3, 7]. An intermittent system,
with otherwise strong chaotic properties, is not structurally stable, as is the case with
axiom-A systems. In a smooth bound system or, equivalently, in a smooth map, this
means that small stable islands in phase space will normally exist [8], no matter how
strongly chaotic the system is. In [9] it is shown how such small islands influence the
decay of resonances, namely in the same way as intermittency does.

There has recently been much work devoted to the study of the quantum
mechanics of systems exhibiting chaos on the classical level, for a review see [10].
Statistical studies of the set of quantum eigenvalues have been made, and for
bound chaotic systems with time reversal symmetry, the level statistics have been
conjectured {11] to agree with the Gaussian orthogonal ensemble (GOE). The level
spacing distribution generally agrees well with the one given by GOE, but for other
statistical measures, such as spectral rigidity, there is considerable disagreement [12,
13]. The understanding of these results from a semiclassical viewpoint is fragmentary.
It is evident that the omnipresence of intermittency might be highly relevant in such
a discussion.

It is also interesting to note that a small island of stability in a phase space
corresponds to a regular part of the quantum spectrum [14, 15]. Due to the close
connection between intermittency and these small stable islands it is natural to expect
a regular component of the spectrum even in an arbitrary ergodic, but intermittent,
system (e.g. billiard). Will this mean deviation of the level spacing distribution from
the GOE or is it a neccesary condition for GOE(-like) distributions?

The purpose of the present paper is to study some semiclassical consequences
of intermittency. Integrable systems may be semiclassically quantized by the WKB
method (or rather the EBK method, in cases when the Hamiltonian is non-separable).
A more general semiclassical theory is given by the Gutzwiller trace formula [10, 16]
where the spectrum is written as a sum over periodic orbits. Successful use of this
formula has been made in {17] for an open scattering system fulfilling axiom A, using a
simple resummation method. Some progress has recently been made [18-22], applying
the trace formula for bound ergodic systems, i.e. bound systems where all periodic
orbits are unstable. However, the success in [17] relied heavily on the hyperbolicity,
and the associated simple symbolic organization of periodic orbits. Bound chaotic
systems are more complicated by, e.g., the presence of intermittency. The symbolic
dynamics in an intermittent system is generally infinitely complicated. This is serious
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because a simple symbolic dynamics is crucial for nice analytic properties of the trace
formula [23]. This motivates a close study of intermittent properties in realistic bound
potentials.

The paper is organized as follows. In the next section we review some semiclassical
properties of hyperbolic systems and their relevance to an open system. In section 3
we present a one-parameter family of bound systems which we will use as a strongly
intermittent model system and show how this system may be approximately quantized
using the WKXB method and the adiabatic approximation. In section 4 we derive the
action integrals and stability eigenvalues for a family of periodic orbits associated with
the intermittent motion. We show how Gutzwiller’s trace formula applied to these
restricted families provides results which closely resemble the WkB result, but with
interesting differences. We round off with a discussion in section 5.

2. Semiclassical mechanics of hyperbolic systems

The semiclassical eigenvalues correspond to the poles of the Gutzwiller trace formula
[10, 16) or, equivalently, to the zeros of the Selberg-type zeta function [24], which for
systems with two degrees of freedom reads as

z.(B)=]]1I -t,a7™) ¢
P m={
where

exp(i[S,/h — pu,7/2])
» = Xrp J]Apl”fp . 2)

S, is the action integral for a prime periodic orbit p, A, the expanding eigenvalue
of the linearized Poincaré map, and p, a geometrical phase index [25]. We have
assumed that all orbits are unstable. The quantum eigenstates belong to the
irreducible representation (symmetry class) » and the periodic orbits are defined
on the fundamental domain (or equivalently in the desymmetrized system). Xx,., is
a symmetry factor [26-28] that depends on the irreducible representation r and the
symmetry of the orbit p.

The spectral density function d(E) = 3, 6(E — E,) is related to the zeta

Formmntinm 7 anoneding tn
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d(E):cf(E)-{-ilmd—dEan(E) (3)

where the energy is assumed to contain a small negative imaginary part. d( E) is the
mean spectral density,

It is a natural first step to apply equation (1) to axiom-A systems, i.e. systems with
a symbolic dynamics, and the stability cigenvalues of all periodic orbits exponentially
bounded away from 1. Let us further assume that the symbolic dynamics is binary
and complete, i.e. each periodic binary code corresponds to one periodic orbit. This is

realized, for example, by a symmetric three-disk scattering system, provided the disks
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are sufficiently separated [17, 29]. The zeta function (1) is dominated by the m = 0
factor, Z;, with expansion [17, 30]
Zy = 1ty ~tg—[tyy—t 1] — (1o —totol — [t100— t1 tr0] — [tr1o0— t1tiw—f110t0 + 1 tiotol
= [t1110 — t1tnsol — [trom — tiooto] — - 4
The expansion is organized in such a way that each square bracket contains some long
orbit(s) (length n} minus its approximant(s) in terms of shorter ones. The sizes of
these curvature corrections fall off exponentially with n. This effect is called shadowing.
The expansion is dominated by the findamental terms, for example, ¢, and ¢;. It
was demonstrated in [17] that very accurate results for the quantum resonances can
be obtained from (4) by keeping curvature corrections up to some n, and that the
results converge rapidly with increasing n.

To get a qualitative idea of what the spectrum looks like, assume that the curvature
corrections vanish identically (corresponding to infinitely separated disks) and that
8, = Sy=L-kand A; = Ay, = A, where the wavenumber k = +2E and L is the
disk centre separation (we are using units such that A = m = 1). The zeta function
now approximately equals [31]

o9 eiLk
om T (12
m=0 * ¥ tRix 4
with zeros given by
2rn i
k‘n‘m—T—l[A(i-'-m)—h] (6)

where we have introduced the (average) Liapunov exponent A = logA/L and the
topological entropy = log2/ L. The result is a regular lattice of quantum zeros far
down in the complex k-plane (remember that the system is open) where the leading
quantum resonances correspond to m = 0.

The completeness of the symbolic dynamics is crucial for this qualitative result.
Suppose that the O orbit is pruned (and that for simplicity no other orbit is). (The
overline symbol in O denotes periodicity, however this symbol will be frequently
omitted in the following, since we only refer to periodic orbits.) Then there will
be a whole sequence of periodic orbits without shadowing terms: [10°] with i > 0
[30, 31] and these orbits may now be considered as fundamental. It is clear that
equation (6) no longer captures the qualitative structure of the spectrum. We will
eventually see how intermittency is often associated with such a pruning rule. The
associated sequences (like 10°) which will dominate the expansion of the zeta function
will subsequently be called intermittent sequences and will have stability eigenvalues
typically growing algebraically with ¢ to be compared with the exponential growth in
the hyperbolic case.

This will be the case if we close the disk system above. The orbit 0, ie. the
orbit bouncing back and forth between two disks, will thus be pruned. The orbit 1(*
will bounce i times in the horn-shaped region where the disks touch. The motion
in this region is (asymptotically) integrable and the stability eigenvalues will increase
algebraically with 7. Note that not only the 0 cycie will be pruned in the ciosed disk
system. In [32] it is argued that there is an infinity of pruning rules and that the
pruning may be described in terms of a pruning front [33]. It may very well be the
case that an infinite grammar of the symbolic dynamics is a generic property of bound
Hamiltonian systems.
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3. WKB quantization in the adiabatic approximation

As a model system we will choose the one-parameter family of Hamiltonians
H=1(pk +p} + (a2))'/2). (7

In the limit ¢ — O we obtain the hyperbola billiard. Increasing a means a gradual
softening of the billiard walls and when a = 1 we recover the frequently studied
z?y? potential. The symmetry group of this family is C,,. The periodic orbits in
these systems may be described by a symbolic dynamics using a three letter [2,1,0}
alphabet [21, 22, 28, 34]. This coding scheme is thoroughly described in [22] together
with explicit rules for determining the symmetry factors x,,, in terms of the symbol
code. The important detail to bear in mind in the subscquent discussion is that a
sequence of zeros, as in 200000 = 205 corresponds to a number of oscillations in the
horn region, see figure 1.

a) .20%. r / \

by 105, I—N
A%r Y
¢) 1105 =

o

Figure 1. Members of the intermittent sequences 20° and 110%, both in the fundamental
and full domain. z®y® model
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The equipotential curves have horn-shaped regions similar to those in the closed
disk systems but now with infinite area; the quantum mechanical spectrum is still
discrete. The systems show a typical intermittent behaviour with chaotic scattering
in the central region and almost integrable motion out in the horns, The motion in
these horn regions may thus be treated in the adiabatic approximation [35] in the
following way:

Suppose that = » y, then the motion in the = direction will be much slower
than in the y direction, and = may be regarded as a slowly varying parameter. In the
adiabatic approximation the motion in the y direction is described by the Hamiltonian

H, =1 (p,z, + (mzyz)”“) - (8)

By the adiabatic theorem the action integral in the y direction, as given by

— — 1+a)/2
J, = fpydy— (2H )2 f(2fa) [ )
where
e N 1 I £ 1 |Lr.l 10N
]U/)—‘-,Z";f\/l—|2| az {1u})

is approximately a constant of motion. The full Hamiltonian may now be written as
H = % p2 + H (z), giving (approximately) the = motion for any J . If we now also
transform the (2, p_) pair to action-angle variables we obtain the following expression

for H
5 2/(a+2)
et/ @) ()]

We note that, although this expression was derived under the (asymmetric) assumption
r 3» vy, the final result is symmetric in = and y. Even though these adiabatic
mrprpcmnnq are not valid in the central realnp_ it is very remntmo to nerform a

semiclassical quantization of (11). This was mdeed done for the Spec1al case a = 1
in [35]. In the other limit a — O (hyperbola billiard} one obtains

Egy=ir(n,+ (n, +1). (12)

Note that, in this expression, the factor (n + 1) appears and not the more familar
factor (n + 2) since reflections off a hard wall acquires a phase shift m, rather
than w/2. Quantum mechanical calculations have been performed for the A,
representation (denoted by minus signs in the fifth column in table 1) and the B,
representation (denoted by p]us signs) in [36]. These two representations correspond
to odd values of (n,,n,) since the wavefunctions are odd with respect to the

=0and ¢ =0 lmes With the two adiabatic states (k,!) and (I, k) one
can construct one A, and one H, state (except the & = { case which always
corresponds to a B, state). We see from table 1 that the spectrum is surprisingly
well described by this simple adiabatic expression. However, due to the central part
of the potential where the adiabatic approximation is not applicable, the degeneracy
between the two representations is split. Within each representation we clearly see
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the effect of level repulsion. (The last column in table 1 show averages over the
quantum mechanical eigenenergies which should be compared with the (degenerated)
semiclassical adiabatic ones in the second column.) Although close to an integrable
Hamiltonian, the system is still non-integrable, so this is just what we should expect.
Another aspect of this non-integrability is that (almost) all periodic orbits are isolated
and unstable. In the strict limit @ — O all periodic orbits are indeed unstable, but
when ¢ > 0 small regions in phase space are generally occupied by regular motion
[8, 22].

Table 1. Adiabatic and exact quantum eigenvalues in the hyperbola billiard.

Eqs EQM Eave
6.28 5.87 58
22

1257 i0.73 12
13.66
18.85 18.14
18.14
25.13 22.89
2471
2846
31.42 29.75
31.45
31.70 33.97
36.81
38.52
42.10
43.98 43.12
43.67
5027 48.27
48.63
51.91
52.56
56.55 55.10
55.55
59.14

-
"

3
e

+
=N ]
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—
-
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The problem of calculating the mean spectral staircase function is similar to the
problem of counting the number of integer lattice points below a hyperbola. A
solution was given by Dirichlet [37]. The mean number of states below E belonging
to representation A, and B, is then found to be (cf appendix)

i E
Rl E) = A= In(E) + 3-[27 — 1~ In(2m)] + o( VE). (13)
T 27
This expression should be compared with the result of [38]
N(E) = zifr-)n( E)+ -2-%[27 +1n(2) - 2In(27)] + o(VE). (14)

The adiabatic expression is obtained from an extrapolation into the region where
the adiabatic approximation is not valid whereas the latter formula is the result of a
careful analysis of the central region as well as the arms. The results only differ by
10% in the second term.
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4. Periodic orbit quantization in the adiabatic approximation

The aim of this section is to see to what extent we can reproduce the WKB result of
the last section by means of periodic orbit theory. There are two families of periodic
orbits exploring only the arms of the potentials (7) and which may be relevant for
this purpose. These are the infinite sequences 20' and 110°, cf figure 1. These
orbits may be considered as fundamental since they cannot be pieced together from
shorter orbits because of the pruning of the zero cycle. We can now write down an
approximation of the zeta function by means of a sum over the fundamental orbits,
cf equation (4), only taking into account orbits exclusively exploring the arms

ZWEym1= 3 t,— > t, (15)

p=20% p=110%

where i, is given by equation (2). It is a poor approximation of the full zeta fucntion,
since it neglects the influence of the central chaotic region, but it is likely to be related
to the WKB result of the previous section. In (15) we have omitted the factors in
equations (1) with m > 0.

Our objective now is to calculate the S, and A, for intermittent sequences such

ae MM Wa will alen ffar tha minmant) racteint narcalyse ta the cenarial raca 4 o )
as LU ., YYe Wlll dldy \I.Ul. LLIIG lllUlllDllL} 1ealLlIvl Uul GIVGS (AW 8 w3 Dl}bblal Lasv U —F U,

where we have the adiabatic Hamiltonian (cf (11})
H=1xJJ, (16)
From the fundamental relation w = 8 H/8J we get

=1
{wm =3md,

-1
W, = E‘R‘Jm.

(17)

An orbit in the family 20° makes (i + 1) /2 full oscillations in the y direction for each
1/2 oscillation in the x direction (this corresponds to one traversal of the periodic
orbit in the fundamental domain, but only half of the corresponding periodic orbit in
the full domain, cf figures 1 and 2):
w
v =2 o it (18)

W, Jy

Equating (16) and (17) gives J, and J, so that we may express the total action
integrai S, as

S, =2m(3J. + 3(i+1)J) = Van(i + 1) k(E) (19)

where k( E) = v2E is the momentum {(or wavenumber).

The stability is slightly more complicated to calculate. To this end we introduce
the Poincaré surface of section y = @, thus defining the arca-preserviig map
(z',pl.) » (z”,p") The aim is to calculate the stability (or monodromy) matrix
M

_ aﬂ)”/a.‘r’ axﬂlam'l 20
M = (ai"/az' 8i" /83! )" (20)
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calculated in the adiabatic approximation.

The adiabatic approximation breaks down in the central region. The results in the
previous paragraph for the action integral could, however, be continued into this
region without trouble. This is not possible when calculating the stability. In order to
calculate the stability for the orbits 20° we split the orbit into three parts according
to figure 2 and write M = M, M M, where only M,y is to be calculated in the
adiabatic approximation.

The idea now is to introduce variations 6z’ and ép! and write down adiabatic
equations to determine Sz and ép!! uniquely. We are also going to restrict ourselves
to orbits starting and ending at 2’ = z" = z, with momentum p}, = —p] =
ke cos(¢,). Without loss of generality we can set k(E) = v2E = 1. o this end we
rewrite equation (9) as {a = 0)

H

y = 3 dlat. (21)

Conservation of energy gives
EZ%P1+H!,($)- (22)

We can now write down the total phase traversed in the y direction

= 2 J 2d
F(z',2",J,) = /fidx =j£ T2 2 =N (23)
Pe = 4 V1 - 1xtilz?

which is an integer multiple of . Due to the definition of the Poincaré section, F
will remain constant when varying =’ and p., so that the requested set of equations
equations becomes

§F(z’ 2", J,)=0
pZ 4+ intilz? =1 (24)

12 1.2 72, .02
Pr + E‘JT Jyﬂ'? =1.
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If, for example, we vary =’ but keep dp’, = 0, it is straightforward to calculate &z
and p’l. We arrive at

(25)

where
s = sin(¢y) ¢ = cos(¢y) f = sin(2¢y) + 2¢. (26)

Mj is obtained from simple geometric considerations. We cite the results obtained
in the limit ¢; < 1, corresponding to 7 > G in 20*

§ 2452
M1=( AL 27

M, is obtained from time-teversal symmetry

-~ {1 0O 1{1 0N _ (M, M 12
m=(o 5)wt(o 5)= (g wi)- o
Taking the limit ¢, < 1 in (25), multiplying M = M;M_4M,, and taking the trace

gives

TH(M) = 3—9-3’3-. (29)

M

All that remains is to relate the angle ¢, to the number ¢ in 20°. Simple geometry
relates " = z' = 2, with ¢,

4
Ry ———. 30
Ty 36, (30)

Since p/, = cos(¢,) (remember k( E) = 1) and through (24) we have
Ymd, zy = sin(¢y) = ¢ (31)

These two expressions thus relate ¢, to the adiabatic invariant J,. Through (16} and
(18) we have a relation between J, and i. We thus arrive at

Tr(M) = Y(i 4 1), (32)

The result is an asymptotic linear increase in the stability eigenvalues with .
Comparison between the result of (19) and (32) with numerical results are displayed
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Figure 3. Action integrals () and the trace of the stability matrix (b} calculated in the
adiabatic approximation (broken curve) and numerically (squares), for the sequence 20°
in the hyperbola billiard, k(E) = 1.

in figure 3. The actions S(k) agree extremely well. The slope of the traces approach
the calculated value of 117/4 but there is a small shift.
The associated Liapunov exponents tend to zero

logA; log: .
- ~ e s () —
A T, 7 T — 00 (33)

which, as we have said, is typical for an intermittent system. _

A similar treatment may be given to the intermittent sequence 110*. The result
is still a linear increase in Tr{ M) but with a much larger prefactor. The last sum in
(15) may thus be omitted. To write down the adiabatic zeta function we only need
the symmetry factors x, , and the phase indices u,. From the expressions in (22) we
obtain

F

Xr'p=("'].‘). ifr:AZ’BZ
. (34)
Ky = 2(i + 1).
We can now write down the adiabatic zeta function Z,4 as
o0 + T
Z. =1~ % ¢ ~1+cvex})("’4ﬂ_}k(E)) (35)
ad PAER ! 4:4 ﬁ (P

p=20% =1
where

c= i—‘;—.,, = 0.185 a=0. (36)
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A similar calculation for the z?y? model, that is a = 1, also yields a linear increase
in Tr( M) for both the intermittent sequences. The calculation in the central region is
more difficult to make accurately but numerically one finds that the slopes of Tr( M)
against { are 24.6 and 23.5 for the 20° and 110° sequences, respectively. The adiabatic
zeta function for the a = 1 case is thus given by (35} but with ¢ =5 0.41, and with a
simple rescaling of energy.

It would now be interesting to study the staircase function

Ny (E)-N(E)= -;zr— Imlog Z,4( E) r= A, + B, (37

and to compare it with the corresponding WKB result: Nyyg(E) — N(E), where
Nyke( E) is obtained from (12) and N(E) is given by (14).

The series in (37) converges absolutely if Im( E) > 0 and diverges if Im( E) < 0.
However when Im({ E'} = 0, expression (37) seems to converge and the result obtained
from the first 100 terms is displayed in figures 4(a} and (c).

0415 : 28 _ .
g3y 1 1M Ines | gl MmN .\ 3
i 1
a.2} 1.5¢ \ A
0.1 1.0 \ L
0.5} ’ RERR
o oo
-0} 0 ' Vi
‘0.5' \ \\ ) \ "
_.0.2‘ _1'0“ \ - :; -}
03 -1.5¢ \ £
-0.4 2.0 " an,
5 m § 8 m
2 1z b
0L T manud
2.
02
f\ / I
f
OFf - o:
! Al
-02
_2.
~0.4} -3t 2%.[
. i -4 . .
2 7 28 ) ) 2 2% % 78 30

Figure 4. Spectral staircase function calculated in the adiabatic approximation using
periodic orbit theory ({¢) and (¢)) and the wKB method ((b) and (d)).

The corresponding WKB result may be seen in figures 4(b) and (d). We note a
striking similarity. The intermittent sequences yield peaks close to the WKB positions
and there is a clear correlation between the degeneracy of the WKB eigenvalues and
the height of the peaks in figures 4(a) and 4(c). Clearly the periodic orbit result is
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smeared out compared with the wKkB one. However, the most important difference
between the two figures is the amplitude of the oscillations. Clearly, the periodic orbits
that went into this calculation only constitute a small subset. Therefore they will not,
by themselves, produce zeros on or close to the real k axis of the corresponding zeta
function. The result from this adiabatic calculation should be interpreted instead as
an integrable component of the spectrum. However, not in the sense of {14} where
certain levels (in the semiclassical limit) are associated with regular motion and some
with irregular motion. For finite energies it will be recognizable as a tendency of the
spectrum towards the integrable result of equation (12).

In the @ = 1 case the only difference lies in the factor ¢ which is larger; the result
is quite similar to those in figures 4(a) and (c) but with roughly twice the amplitude.

5. Discussion

It is instructive at this point to review an expansion of the full zeta function (1) that
was made in [22] for the hyperbola billiard. The zeta function is then written as a
sum over all possible linear combinations n = [mp],

Z(E)=)_ C,elSamunr/l (38)

where we have defined the quantities

S.=2.mS, (39)
r

Hy = Zmpp‘p' (40)
P

The C, are amplitudes related to the stability eigenvalues. In [22] this series was
ordered according to decreasing amplitudes. The first 100 terms for hyperbola billiard
in the A, representation are given in table 2. We use the obvious notation

Z =3 (-1t ][(-1)" ] (41)

The (infinite number of) factors with m = 0 are omitted from the table since
=l =,

We note that there are no terms with m > 1 among the first 100 pseudo orbits
so this justifies the omission of all higher factors in (1).

We also made the shadowing assumption, but terms like £y500 — tz00t2000 2T nOt
very abundant in the expansion and the cancellation works pretty well.

The series is dominated by two types of intermittent sequences and cross terms
among them. First there are the infinite ones, already discussed: 110° and 20, this
subset of the expansion is well approximated by (35). Then there are finite sequences
exploring both the central region and the arms. Example of this latter kind are
10%, 21210° and 220° terminating at i = 5, 16 and 51, respectively. These are not
fundamental in the sense of [30], since they may, in some sense, be approximated
by shorter orbits exploring only the central and horn regions, respectively. However,
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Table 2. Expansion of the Selberg zeta function. Hyperbola billiard in the A,
representation.

1 1 26 - 1000 51 =12110 76 —tpon
2 -1 27 — Lyt 52 —{1000 77 _tnl()"
3 -ty 28—ty 33 —tnznee 78 —ty15108
4 -0 29 -1z 54 ta1t1o 79 —tapg2
5 —t3100 30 — 122000 55 _t2207 80 ‘—tm]ﬁ
6 —tage 31 tntaw 56—ty 81 ta0t21000
7 =13 32 —1i110 57 =110 82 _t212109
8 ~t1p 33 Eylyg 58 —t212104 83 —tmgg
9 —ta 34 t21t21000 59 —type 84 —tyu
10 ~t3000 35 — 1Ly 60 =1221000 85 tiot2100
11 —t100 36 tit1p 61 —tmn B84 _t21210]°
12 tity kY _t220‘ a2 -—1212105 87 —tzon
13 —tm 38 —t21210 63 tai210 88 —tyg4
14 —tap 39 — 1y 64 —1309 89 —13121010
15 —1t10 40 ta0t2100 65 =ty 90 ~t1105
16 —tm 4] ~tys 66 —tllﬂ“ 91 t10t21000
17 tit2e 42 =1yp10 67 tita0 92 —13121912
18 —typ8 43 ta10t21000 68 =t312100 93 —t1g
19 —t 44 —t1100 69 —Lya410 94 =tygs
20 titnoo 45 —t212100 70 ~tuw 95 —tygs
21ttt 46 intx o —ipw 96 =ty12101
22 —tag 47 —111000 72 —ty19107 97 —1yp16
23 —ty0 48 — 19908 73 t10t210 98 —121100
24 —Eop 49 — 11 74 —typ1s 99 —ti2100
25 taine 50 tnootaooe 75 taotaee 100 —tp)51414

no straightforward shadowing scheme has been worked out for the hyperbola billiard
and a simple inspection of table 2 does not indicate any effective shadowing among
long orbits and combinations of shorter ones. The finite intermittent sequences are
of fundamental importance in the expansion of the zeta function, representing the
coupling between the central chaotic region and the intermittent horns. The traces
of the stability matrix Tr(M) for the finite sequences increases slower than linearly
with the number of zeros, as seen in figure 5(a).

In [19, 22, 39] it was demonstrated that the cycle expansions, such as equation (38)
yields zeros close to the real k axis, where there is a one-to-one correspondence
between the real part of the zeros and the quantum mechanical eigenenergies, at
least for low energies.

For the case treated earlier the infinite intermittent sequences, associated with
an integrable spectrum, and the finite sequences, representing the coupling with the
central stochastic region of the potential, should cooperate in order to produce these
zeros. These zeros exhibit level repulsion compared with the underlying integrable
result, see table 1.

In the z2y? model the sequences 10¢ and 220° already terminate at i = 0 and
7, respectively. We also noted that the amplitude of the phase variations of Z,4
was twice as large as those in the hyperbola billiard. The adiabatic+WKB result
of [35] (corresponding to equation (12)) also agreed better with the exact quantum
mechanical result.
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Figure 5. (a) The trace of the stability matrix for the infinite sequence 20° (¢) and the
finite seauences 21210 {’4-) and 220¢ (I"“ for the hypgrhn]n hilliard {b} The trace of
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the stability matrix for the infinite sequence 20° {0} and the finite sequence 220° (OJ)
for the zzyz model.

in the smooth systems ¢ > 0, Tr{ M) will, in the general case, not even increase
monotonically with the number of 0 in the code. This is illustrated by the sequence
220" in the 22y? model in figure 5(b). The reason is that when a periodic orbit
is pruned through a bifurcation, its stability eigenvalue has to be unity. When the
parameter ¢ is increased from 0 to 1 the associated curve in figure 5(a) will bend
down and members of the sequence 220* will be pruned one by one [22]. In a small
range in the parameter ¢ there will be a stable island surrounding the orbit which
is about to be pruned. The presence of stable orbit induces divergences in the trace
formuia.

Even if we were so lucky that no stable islands exist for the parameter value we
have happened to choose, it is evident that these effects will cause serious problems
in any attempt to apply the trace formula. A regularization scheme based on an
analogy of the Riemann—Siegel formula [18] will clearly not capture such an intricate
structure in the sequences of cycle invariants, which we must expect to find in any
simple smooth bound system one uses to model chaos. We are thus far from any
simple rules for quantizing chaos.

The potentials treated in this paper are special in the sense that the phase
space associated with the intermittent motion is infinite. The extent to which the
wavefunctions penetrate the horn regions is given by the de Broglie wavelength. But
as the energy tends to infinity the ratio between the area of the accessible horn
region and the central region increases. The question is whether the energy spectrum
is described more accurately by (12), as the energy increases. In particular adiabatic
states with n, > mn, and n,>n, should give an accurate description, see [40, 41).
The published eigenvalues in the hyperbola billiard are too few to give any hints of
the tendency.

In [36] it is argued that the level spacing distribution in the hyperbola billiard
is given by (or similar t0) GOE, but the number of obtained eigenstates is {00 Jow
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I—o

Flgure & The region under the hyperbola is divided into three subregions.

to provide a significant result. The question is whether the integrable tendency
represented by the intermittent subregions of phase space is a necessary component
to obtain a GOE-like level spacing distribution or whether it will mean deviations
from GOE. Studies of the stadium billiard suggests the latter possibility [42]. The
marginally stable orbit between the straight sections corresponds to an underlying
integrable component of the spectrum in very much the same way as the result
earlier and it is argued that this will induce an increased probability of occasional
degeneracies compared with GOE.

Usually the spectral rigidity deviates significantly from the predictions of [43],
where the spectral rigidity is predicted to agree with GOE up to a certain breakpoint
related to the shortest periodic orbit in the system. Such deviations are reported in
[12, 13, 44] for the anisotropic Kepler problem, Sinai’s billiard and the hyperbola
bifliard respectively. If a system is intermittent, as, for example, Sinai’s billiard,
the time scale relevant for this breakpoint should naturally be associated with the
intermittency rather than the shortest periodic orbit in the system. The anisotropic
Kepler problem in [12] is characterized by a phase space densely filled by cantori
[45] and an extreme type of intermittency; there are families of periodic orbits,
associated with the collision manifolds, with accumulating eigenvalues [39], which
should be compared with the algebraically increasing eigenvalues in this article. In
[46] it is demonstrated how transport barriers, such as island chains and cantori,
induce deviations from the GOE for finite energies (thus not in the strict semiclassical
limit). It should be noted that cantori may exist even in chaotic billiards [47].
These examples show how timescales, for example, due to barriers, short periodic
orbits and intermittency, naturally give bounds to a possible universal regime. It has
been stressed in the present paper that such features may not be avoided in chaotic
systems. Low-dimensional chaotic systems show a rich and varying behaviour, leaving
traces in the spectral measures. It is a challenge for the future 10 understand the
subtle interplay between features such as cantori, intermittency, stable islands on the
quantum level as well as localization effects of the wavefunctions.
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Appendix

In this appendix we slightly generalize a result due to Dirichlet [37] which we need
in order to calculate the mean level staircase N(E) for systems where the energy
levels are given by

K(E)= (i~ a)(j - ) ¢

where ¢ and j are positive integers and 0 € o < 1. We therefore ask ourselves:
how many integer pairs (4, ;) are there such that (i — a)(7 — o) < K. We call this
number NV and, with the notations in figure 6, we can write

1"\!’(1”):2"V’A+B—1”A=2 z —\ V‘ \( Z ) {43)
0i-agVvK 0gi- a{\/_ U£i—agVvK
U (ima)j—a )< K
=2 s _ 2
Z —+ a] VK + a] (44)

0gi-agvVK
where [ | denotes integral fraction of. 1t is now straightforward to show

VE-a)
N(E)=2K Y Pmpeiel (0 o(VK). (45)
i=1

We now need to calculate a sum such as Z“\; 1 1/(7 — ). To that end we expand the
terms in the sum to a geometric series. Exchanging the order of summation we get

N o0
Zt_a Z = In(N) +7+Za C(k+1)+0(N) (46)

=1 k=li=]1 k=1

where - is Euler’s constant and ¢ the Riemann zeta function. Introducing the
constants

o0
e =7+ af(k+1) (47)
k=1
we can write down our final mean level staircase as
N(K)= KIn(K) + (2v, - 1)K + O(VK). (48)

Example, Let us demonstrate how to use this result to estimate the mean spectral
staircase for a system with eigenenergies given by

E=in(n,+1)(n,+1) (49)

in the representations A, + B,. The quantum number are thus odd: n, = 2i -1
and n, = 2j — 1, where i and j are positive integers. The function K'(E) in (42) is
K(FE)=E/2r and o= 0. The result is given in equation (37).

Non-zero o appears in other representations and/or other phase indices.
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